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ABSTRACT 

 

Photovoltaic (PV) system performance models are relied 

upon to provide accurate predictions of energy production 

for proposed and existing PV systems under a wide 

variety of environmental conditions.  Ground based 

meteorological measurements are only available from a 

relatively small number of locations.  In contrast, satellite-

based radiation and weather data (e.g., SUNY database) 

are becoming increasingly available for most locations in 

North America, Europe, and Asia on a 10x10 km grid or 

better.  This paper presents a study of how PV 

performance model results are affected when satellite-

based weather data is used in place of ground-based 

measurements. 

 

1.  INTRODUCTION 

 

Photovoltaic (PV) system performance models are relied 

upon to provide accurate predictions of energy production 

for proposed and existing PV systems under a wide 

variety of environmental conditions.  Ground based 

measurements, including typical meteorological year 

(TMY) data, are only available from a relatively small 

number of locations.  In contrast, satellite-based radiation 

and weather data (e.g., SUNY database) are becoming 

increasingly available for most locations in North 

America, Europe, and Asia on a 10 by 10 km grid or 

better.  Several studies have compared satellite-based 

radiation data with ground-based measurements (e.g.,[1]) 

but far less work has been done to evaluate the results of 

using satellite data as input to PV performance models 

[2].  Because each performance model is unique and has 

specific sensitivities to model input parameters the use of 

satellite-based irradiance inputs will have different effects 

depending upon which model is used. 

 

In this study, we consider the performance of a small (1 

kW) c-Si grid-tied PV system deployed at Sandia 

National Laboratories (SNL) in Albuquerque, NM 

between April 2007 and March 2008.  We measured 

irradiance (direct normal, diffuse horizontal, and global 

horizontal), air temperature, and wind speed, among other 

weather parameters during the deployment.  We also 

monitored electrical performance on the DC (current and 

voltage) and AC (power) sides of the inverter.  In addition 

we obtained hourly satellite estimates of direct normal 

and global horizontal irradiance as well as air temperature 

and wind speed.  In the following sections of this paper 

we will first compare the ground-based measurements to 

those estimated from satellite imagery.  Second, we will 

employ several PV performance models using both 

ground and satellite-based weather inputs and compare 

model results of electrical performance and measured 

performance. 

 

2.  DATA ACQUISITION METHODS 

 

Ground-based measurements of weather parameters made 

at 2-minute intervals were collected at SNL's PV weather 

station adjacent to the PV test array.  Direct normal 

irradiance (DNI) was measured with two pyrheliometers 

(a Kipp & Zonen CH1 and an Eppley NIP), diffuse 

horizontal irradiance (DHI) was measured with two 

Eppley PSP pyranometers (one fitted with a shade disk 

and the other with a shade band).  Global horizontal 

irradiance (GHI) was measured with a Kipp & Zonen 

CM21 pyranometer.  Air temperature was monitored with 

two Climatronics Aspirated Shield Temperature Sensors 

and wind speed was measured with a Climatronics Wind 

Mark III Wind Sensor at 10 m above ground level.  

Weather data were processed to obtain representative 



 

hourly values consistent with the Typical Meteorological 

Year (TMY) model.  Specifically, irradiance data was 

combined in order that the total amount of energy 

reaching the sensor during the 60 minutes preceding the 

hour is reported.  Hourly values of temperature and wind 

speed are reported as average values from the period 

spanning 30 minutes before and after the hour.  Because 

satellite data represents instantaneous estimates of 

irradiance, the average of irradiance at the present hour 

and one hour prior was used to estimate the total amount 

of energy reaching the ground during the previous hour. 

 

Satellite-based irradiance estimates (DNI and GHI) for 

the same period were obtained from Clean Power 

Research's SolarAnywhere database for a 10x10 km area 

that includes the location of the PV test array.  Details on 

how irradiance data are generated are available elsewhere 

(e.g., [3]).  SolarAnywhere also provides instantaneous 

estimates of air temperature and wind speed at hourly 

intervals at each satellite pixel.  These data are 

interpolated from the METAR network of ground stations 

(several 1000s in the US) – this worldwide network feeds 

aviation forecasts and the National Weather Services’ real 

time modeling process with ongoing ground-based data.  

The source of these data are referred to as "satellite-

based" in this paper even though they are derived from 

ground stations. 

 

For several brief periods during the one-year deployment, 

the PV system went offline for maintenance.  Weather 

data obtained during these periods is excluded from the 

comparisons and analyses described in this report.  

Similarly, data during the night and occasional periods 

when either ground or satellite measurements were 

missing were also excluded. 

 

3.  COMPARISON OF WEATHER DATA FROM 

GROUND AND SATELLITE SOURCES  

 

Satellite-based estimates of radiation, temperature, and 

wind speed are not expected to be as accurate as ground-

based measurements of these parameters for a number of 

reasons.  First, the satellite-based estimates are indirect 

interpretations of data observed from space (irradiance) 

and widely-spaced ground stations (temperature and 

winds speed) and therefore are associated with all the 

uncertainties inherent in generalized modeling.  Second, 

the spatial and temporal resolution of the satellite imagery 

is coarse when compared with our ground based 

measurements.   The satellite-based values are calculated 

from snapshot images of the earth and do not distinguish 

differences between locations within a single pixel.  

These factors can cause significant deviations between 

satellite and ground measurements, especially during 

partly cloudy conditions.  Figure 1 compares ground-

based measurements and satellite estimates of irradiance 

for two days.  The raw ground measurements are plotted 

in grey at a 1-min interval.  The hourly data is averaged 

over a one hour window and plotted as red crosses.  

Satellite estimates of hourly averages are also shown as 

blue circles.  These estimates are the average of the 

instantaneous satellite values on the hour and for the 

previous hour and plotted 9in between.  It is evident from 

the figure that the satellite data is quite accurate during 

clear conditions (first half of day 1), but that the satellite 

estimates can deviate significantly from the hourly 

averages during periods of partly cloudy conditions. 

 
Fig. 1. Two day example of irradiance record comparing 

ground measurements and satellite-based estimates. 

 

Table 1 lists the mean and standard deviation of the 

residuals (difference between satellite estimates and 

ground measurements).  Residuals for GHI are 

significantly smaller than for DNI.  Scatter plots 

comparing ground and satellite-based values of GHI, 

DNI, air temperature, and wind speed are shown in Figure 

2.  The correlations between ground and satellite 

estimates of global horizontal irradiance and air 

temperature are significantly stronger (R
2
 values of 0.92 

and 0.97, respectively) than the correlations for direct 

normal irradiance and wind speed (R
2
 values of 0.78 and 

0.5, respectively). 

 

It is interesting to note that the temperature and wind 

speed residuals appear to be sensitive to the time 

derivative of the "satellite" estimates for these parameters.  

Figure 3 shows that there is a positive correlation between 

the "satellite" temperature and wind speed residuals and 

the time derivative of these quantities.  In other words, 

when these "satellite" values change significantly from 

one hour to the next, the residual tends to be higher than 

normal, which indicates poor agreement with ground-

based measurements at these times.  This correlation 

suggests that one characteristic of the satellite estimates is 

occasional hours when temperature and/or wind speed 

appear to change rapidly while the ground measurements 



 

do not.  A similar correlation is not evident for the 

satellite irradiance estimates.  A plausible explanation of 

this pattern is that the METAR data are interpolated from 

instantaneous measurements made every hour from a 

network of stations while the ground data from the SNL 

weather station use mean values calculated from many 

measurements over the hour.  The difference between 

time averaging frequent measurements and spatial 

interpolation of widely-spaced hourly measurements 

might explain the correlation observed, especially during 

periods when weather fronts are passing over the area. 

 

TABLE 1.  RESIDUAL SUMMARY STATISTICS 

(WEATHER INPUTS) 

 

Variable Mean Stdev

GHI Residual (W/m
2
) 0.019 83.061

DNI Residual (W/m
2
) 17.257 166.452

Temp Residual (deg C) 0.157 1.811

Wind Speed Residual (m/s) 0.114 2.183  
 

 

4. SIMULATION OF PLANE OF ARRAY 

IRRADIANCE 

 

Most PV performance models require as input DNI and 

GHI.  Both weather datasets examined here included both 

of these components.  The first step performed by the 

models is to calculate the plane of array (POA) irradiance.  

There are a number of different radiation models that 

have been developed for this purpose.  The model by Hay 

and Davies [4] accounts for increased diffuse radiation 

near the sun (circumsolar diffuse).  The model by Reindl 

et al. [5] added the effect of horizon brightening; in 

addition to the circumsolar diffuse.  The model by Perez 

et al. [6,7] accounts for both of these components using an 

empirically-based method.  In order to identify any effect 

due to the choice of radiation model, we compared POA 

irradiance predicted by these three radiation models to 

irradiance measured with a pyranometer mounted at POA.  

The results of this comparison indicated that at this site 

and during this test period there is little difference 

between POA radiation predicted by the models and 

measured by the pyranometer.  The Perez model fit the 

measured data slightly better than either of the other two 

models but all performed very well (R
2
 values > 0.99 in 

all cases.  We will use the Perez radiation model for all 

subsequent calculations presented. 

  
Fig. 2. Scatter plots of satellite vs. ground measurements 

of (A) global horizontal irradiance, (B) direct normal 

irradiance, (C) air temperature, and (D) wind speed.  

Lines are linear fits to the data. 



 

 
Fig. 3. Correlations between residuals and time 

derivatives for satellite air temperature and wind speed 

estimates. 

 

5.  SIMULATION OF PV DC POWER OUTPUT 

 

Two commonly used performance models were examined 

in this validation study.  The names of the models are kept 

anonymous, but they were selected to represent two 

fundamental conceptual approaches for PV modeling.  

Model 1 uses an empirical fitting approach while Model 2 

represents the array as an equivalent circuit with a single 

diode.  Both models were run twice, once with ground-

based weather data and once with satellite-based inputs.  

Other than weather inputs, all model parameters were 

identical between runs.  Derate factors on the DC side 

were excluded from the analysis (no derate was assumed).  

This was done to compare each model's ability to translate 

weather to power output without including each model's 

unique way of handling derate factors such as soiling and 

resistive losses, which might have affected the 

comparison. 

 

To compare measured and simulated performance, hourly 

values of DC power output are compared.  Figure 4 

presents scatter plots of modeled DC power against 

measured power for both models using both weather 

datasets.  Although the scatter is greater for the 

simulations based on satellite data, the annual bias error is 

very similar between ground and satellite-based 

simulations for a given model.  At this stage of the 

comparison, we can conclude that the use of satellite data 

as model input for this array only appears to increase the 

variance in the hourly values power predictions, but has 

little effect on the annual bias.  In other words, annual 

energy estimates vary more from the choice of model than 

from the source of the weather data.  

 

We also made comparisons of energy produced over 

longer periods (days and months).  The results indicate 

that the R
2
 values of daily output from the satellite runs 

are nearly identical to those shown for hourly output, but 

that the R
2
 values are significantly higher for the monthly 

output comparisons (0.9536 for Model 1 and 0.9817 for 

Model 2).  One reason that daily values exhibit a similar 

amount of scatter might be related to the position of the 

SNL site, which is located directly to the west of the 

Sandia mountain front, which rises about 5,000 ft above 

the eastern plain.  The mountains directly affect local 

cloud patterns, which can vary over short spatial scales at 

this site, which might explain why the daily residuals vary 

as much as the hourly ones. 

 

6.  RESIDUAL ANALYSIS AND VALIDATION OF PV 

PERFORMANCE MODELS 

 

Analysis of model residuals (difference between modeled 

and measured values) provides a useful approach for 

investigating differences between models. Residual 

analysis is based on examining the distribution and 

sensitivity of residuals with respect to other time-varying 

variables in the analysis.  Table 2 lists summary statistics 

for the model residuals of DC power for the four model 

runs considered. 

 

TABLE 2.  RESIDUAL SUMMARY STATISTICS 

 

Model Mean (W) Stdev (W) 

Model 1 (Ground) 29.6 26.7 

Model 1(Satellite) 31.7 98.7 

Model 2 (Ground) 15.1 27.6 

Model 2 (Satellite) 16.5 98.9 

 

The relationship between predictions of a "perfectly 

valid" model and measured performance should be 



 

"statistical" rather than deterministic.  This is because 

models are based on mathematical functions and model 

parameters are derived to match mean behavior, not 

point-by-point behavior of the system [8].  Furthermore, 

all measurements (weather and performance) are 

characterized by uncertainties, meaning that any 

particular measured value is a sample from some 

underlying uncertainty distribution, which is often poorly 

defined.  For these reasons, a completely valid model is 

one which results in residuals that are randomly 

distributed with respect to all variables in the analysis.  

Therefore, model validation can be summarized as a 

process of testing whether model residuals are random 

with respect to other simulation variables.  There are a 

number of different approaches to testing the randomness 

of residuals.  These are discussed in the sections below. 

 

6.1 Stepwise Regression 

 

Stepwise regression can be applied to residuals to identify 

and rank simulation variables in order of their 

contribution to the variance in residuals.  Stepwise 

regression is based on performing a series of linear 

regressions of the form: 

 
jj

P

j

o XbbY
1

,  (1) 

where Y is a vector of dependent variables and X is a set 

of P vectors of independent variables included in the 

stepwise model.  The b coefficients in (1) can be used to 

develop a prediction model, if desired.  In the first step, 

the method tests the linear regression between Y (in our 

case, model residuals) and a set of independent variables 

(time-varying variables in the analysis) to see which 

variable results in the best linear fit (highest R
2
).  For the 

second and subsequent steps, additional independent 

variables are added to the regression in order of which 

variable provides the highest R
2
 value for each step.  This 

process continues until the probability (p) that an effect is 

due to chance is exceeded.  For our application we are 

interested in the order of the X variables that are selected 

for the model and the resulting R
2
 values.  This method is 

limited in that it can only identify linear trends, but if 

applied judiciously, it can shed light on which variables 

are most correlated with model residuals and help to 

quantify the validity of a PV performance model. 

 

To illustrate the utility of stepwise regression for this 

application, we ran a stepwise analysis on the DC power 

residuals for the four sets of model results displayed in 

Fig 4 and summarized in Table 2.  The independent 

variables included in the analysis were global horizontal 

irradiance (GHI), direct normal irradiance (DNI), air 

temperature (Temp), wind speed (WS), wind direction 

(WDir), angle of incidence (AOI), and  air mass (AM).  

For the models using satellite data, the irradiance, 

temperature, and wind speed data (SA_GHIa, SA_DNIa, 

SA_Temp, and SA_WS) were obtained from that dataset 

and wind direction was not included.  Table 3 lists the 

first four parameters identified in the stepwise analysis (p 

= 0.05). 

 

TABLE 3.  STEPWISE REGRESSION RESULTS 

 

Order Variable R
2

Incremental R
2

1 Temp 0.2302 0.2302

2 DNI 0.3143 0.0841

3 WS 0.3301 0.0158

4 AOI 0.3350 0.0049

Order Variable R
2

Incremental R
2

1 SA_Temp 0.0281 0.0281

2 SA_DNIa 0.0573 0.0292

3 AMa 0.0736 0.0163

4 SA_WS 0.0776 0.0040

Order Variable R
2

Incremental R
2

1 AOI 0.0886 0.0886

2 AMa 0.2115 0.1229

3 GHI 0.2575 0.0459

4 DHI 0.2646 0.0071

Order Variable R
2

Incremental R
2

1 SA_DNIa 0.0288 0.0288

2 AMa 0.0655 0.0368

3 SA_GHIa 0.0753 0.0098

4 SA_Temp 0.0794 0.0041

Model 1 (Ground)

Model 1 (Satellite)

Model 2(Ground)

Model 2 (Satellite)

 
 

The interpretation of these results is made by examining 

the variables that are identified and the R
2
 and 

incremental R
2
 values for each step.  For example, the 

model residuals for Model 1 (Ground) exhibit a 

correlation with air temperature that accounts for 

approximately 23% of the variance in the residuals.  This 

correlation is illustrated graphically in Fig 5.  After 

correcting for this effect, an additional 8% of the variance 

is accounted for by including a correction for DNI.  It 

must be noted that the standard deviation of model 



 

 
Fig. 4.  Scatter plots comparing measured and modeled 

DC power for two models each run with ground and 

satellite weather data.   1:1 lines shown in red. 

residuals for this model are already quite small (Table 2), 

so that the total 31% reduction in the variance (square of 

standard deviation) obtained by including corrections for 

these two variables would result in a change in the 

standard deviation for this model from 26.7 W to 22.2 W 

per hour.  The variables listed in the next two steps 

account for such small reductions in variance they are not 

discussed here. 

 

 
Fig. 5. Scatter plot of model residuals vs. ground-based 

air temperature for Model 1 illustrating the correlation 

present. 

 

Looking at the results for Model 1 (Satellite), we see the 

same two variables (temperature and DNI) appear in the 

first two steps, each accounting for about 3% of the 

residual variance.  The standard deviation in model 

residuals for the models based on satellite data is more 

than three times greater than it is for the ground-based 

models.  Thus, a total 6% change in this variance results 

in a reduction in the standard deviation of the residuals 

that is of similar magnitude to that obtained for the 

ground-based simulation.  This result suggests that results 

from Model 1 might be improved by adjustment to the 

temperature parameters used as input to the model or 

perhaps the use of an alternate form of the temperature 

correction.  Additional comparisons from different arrays 

and sites are needed before the nature of the improvement 

is evident. 

 

The results for Model 2 exhibit a pattern different from 

that observed for Model 1.  For the ground-based model 

run, AOI, AM, and GHI together account for 

approximately 26% of the variance in model residuals.  

For the satellite-based runs, DNI and AM account for a 

total of about 7% of the variance.  The appearance of AOI 

and AM as sensitive variables for Model 2 (Ground) runs 

suggests a possible complication of interpreting the 

stepwise regression results.  These two parameters are 



 

functionally related and exhibit a complex but predictable 

relationship, which is shown in Figure 6.  Although this 

relationship is not linear, these two variables are 

correlated and therefore corrections involving one of 

these parameters affect the sensitivity of the model to the 

other variable.  For this reason, it is difficult to entirely 

separate the effects of these parameters with stepwise 

regression. 

 
Fig. 6. Scatter plot of Air Mass (AM) vs. Angle of 

Incidence (AOI) showing complex functional 

relationship. 

 

The fact that model residuals for Model 2 are sensitive to 

a different set of variables than Model 1 indicates 

differences between these models and point to areas 

where each of these models could be improved. 

 

6.2 Graphical Residual Analysis 

 

One of the limitations of stepwise linear regression is that 

it only tests for linear relationships between the dependant 

and independent variables.  A more general approach 

based on graphical methods may also be useful, especially 

if there are significant non-linear relationships between 

model residuals and input variables.  One such approach 

is to bin residuals by the selected time-varying variable 

and plot mean residuals in each bin against the binned 

midpoint value.  Figures 7 to 10 show these graphical 

results for four selected variables.  The points show the 

mean residuals at each bin midpoint, while the lines in the 

figures represent smoothed fits to data intended to show 

general patterns. 

 

Ground Satellite
Model 1

Model 2

Model 1

Model 2

 
 
Fig. 7.  Plot of mean residuals as a function of air 

temperature.  

 

 

The relationship between residuals and temperature 

(Figure 7) appears to be quite linear, especially for the 

model runs with ground-based weather.  It appears that 

there may be a systematic error at low temperatures in the 

model runs made with satellite data (residual peak at 

temperatures near and below zero degrees C).  This may 

reflect the complication that snow on the ground or ice in 

the atmosphere brings to estimating radiation. 

 

Ground Satellite

Model 1

Model 2

Model 1
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Fig. 8.  Plot of mean residuals as a function of direct 

normal irradiance. 

 

Ground Satellite
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Model 2

Model 1

Model 2

 
 
Fig. 9.  Plot of mean residuals as a function of global 

horizontal irradiance. 

 

Figures 8 and 9 show plots of mean residuals as a 

function of radiation components, GHI and DNI, 

respectively.  Both models exhibit a slight positive 

correlation with DNI, as was identified in stepwise 

results.  Both models exhibit little to no correlation with 

GHI. 



 

 

Figure 10 shows plots of mean residuals as a function of 

air mass.  There is a large increase in the mean residuals 

at high air mass values, which is seen for both models, but 

is especially large for the runs with satellite-based 

weather.  This pattern may reflect a limitation of the 

models to represent the effects of high air mass, which is 

used as a proxy for spectral effects in the models.  Or, 

perhaps, the high residuals reflect complications with 

predicting when inverters have enough light to operate.  

Regardless of the cause, periods of high air mass do not 

correspond with large amounts of energy production from 

PV systems and therefore this nonlinearity is likely to be 

academic. 

 

Ground Satellite

Model 1

Model 2

Model 1

Model 2

 
Fig. 10.  Plot of mean residuals as a function of air mass. 

 

7. SUMMARY AND CONCLUSIONS 

 

Based on results from our test array in Albuquerque, NM, 

it appears that, PV performance models run with site-

specific ground data provide the most accurate energy 

prediction from the system.  However, models run with 

satellite derived weather inputs can provide very good 

estimates of the total energy produced by the array over 

longer time periods because errors associated with 

satellite-based weather are greatest over short time 

periods (hours or days).  Over hourly intervals, the 

standard deviation of model residuals for DC power was 

more than three times larger for satellite-based 

simulations compared with ground-based runs.  But the 

bias errors (mean of the residuals) were not very sensitive 

to whether ground-based or satellite data were used.  If 

this result holds for locations in general, it suggests that 

satellite data are suitable for predicting energy output for 

proposed projects.  In fact, if multiple years of archival 

satellite data are available for modeling, insights about 

annual variability in energy production for a given site 

can be gleaned, information which is lacking when only 

TMY data are used for such predictions. 

 

8. FUTURE WORK 

 

The scope of the present study was quite limited (single 

PV technology (cSi), single location, fixed tilt array, etc.).  

Future work will continue to develop and apply the model 

validation methods discussed here to a greater variety of 

PV systems.  In addition, future studies are needed to 

determine whether satellite-based irradiance can be used 

for system monitoring applications.  Because of the larger 

errors in satellite weather over short time periods, it 

remains to be seen whether these data are suitable for 

such an application.  
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